ShortestPathFinder
Input Ports
Lines defining the network in which to find a path or paths. Input line features must be a topologically noded network with features connecting at line ends only. That is, all features must be split at junctions.
The From-To line contains vertices that define the source and destination nodes in the network. It can contain intermediate stops before the final destination. For example, a From-To line may be used to find the path from A to B to C to D. This can also be read as “the path from A to D that also passes through B and C.” From-To lines can be created by connecting points together to form a line, using the PointConnector or VertexCreator transformers.
Output Ports
For each From-To line, if a path is found it will be output as a single feature through the Path port. This output feature contains the attributes and coordinate system of the original From-To line. The geometry of the output feature is made up of all the parts of network that form the shortest path. Note that if Cost Type is set to By One Attribute or By Two Attributes then the “shortest path” is the one where the sum of the values of the applicable Cost Attribute values is the least.
If a path is not found for a given From-To line, then this From-To line will be output through the Nopath port as a feature that preserves the original From-To attributes but has no geometry.
All other linear features that are not used as part of the shortest path are output through the Unused port.
All non-linear features from either input port are output through the <Rejected> port, as are any From-To lines that have a negative cost(when Cost Type is set to By One Attribute or By Two Attributes).
Parameters
The default behavior is to use the entire set of input features as the group. This option allows you to select attributes that define which groups to form. You can select attributes from both Network and From-To input features.
Note: How parallel processing works with FME: see About Parallel Processing for detailed information.
This parameter determines whether or not the transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group By parameter.
Parallel Processing Levels
For example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes.
You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window.
Yes: This transformer will process input groups in order. Changes on the value of the Group By parameter on the input stream will trigger batch processing on the currently accumulating group. This will improve overall speed if groups are large/complex, but could cause undesired behavior if input groups are not truly ordered.
No: This is the default behavior. Processing will only occur in this transformer once all input is present.
If Cost Type is set to By Length or By One Attribute, then the cost of each input line is set to the length of the line or the attribute value specified in the Forward Cost Attribute. In this case, the algorithm will only consider the original orientation of the lines when finding the shortest path.
If Cost Type is set to By Two Attributes, then the shortest path algorithm will consider both directions of the input lines. The original orientation of the input line has the cost specified in the Forward Cost Attribute and the reversed orientation of the input line has the cost specified in the Reverse Cost Attribute.
The values that result from Cost Type are summed for all input lines as they relate to the From-To line, and the shortest sum becomes the shortest-found path.
This parameter is used when Cost Type is set to By One Attribute or By Two Attributes.
This parameter is used when Cost Type is set to By Two Attributes.
When specified, this attribute list that will hold the attributes for each input Network feature that make up Path output features.
This list also contains a _direction attribute that stores the direction of the segment of the shortest path as compared to its original Network feature. It will either be “same” or “opposite”, depending if the original Network feature had to be reversed or not.
Snap Options
Select Yes to snap the points of the From-To line to the closest end points of the Network lines. The points are only snapped to the network lines if they are within the tolerance specified in Snapping Tolerance.
Note: The shortest distance is calculated based on the specified From-To line and is not affected by snapping.
The tolerance used when From-To and Network Snapping is set to Yes. Points of the From-To line will be snapped to the Network lines if they are within this tolerance.
Usage Notes
If ShortestPathFinder produces unexpected results, consider using AnchoredSnapper instead. Input the From-To Line through the Candidate input port and use the same value for Snapping Tolerance. Specify Snapping Type = End Point Snapping and Add Additional Vertex = NEVER.
Only linear features with non-negative cost attribute values are allowed if the Cost Type is set to By One Attribute or By Two Attributes. If a feature does not have the attribute specified in the Forward Cost Attribute or the Reverse Cost Attribute, a zero cost is used for the line. Any features with a negative cost will be output through the <Rejected> port.
Editing Transformer Parameters
Using a set of menu options, transformer parameters can be assigned by referencing other elements in the workspace. More advanced functions, such as an advanced editor and an arithmetic editor, are also available in some transformers. To access a menu of these options, click beside the applicable parameter. For more information, see Transformer Parameter Menu Options.
Transformer Categories
Related Transformers
FME Licensing Level
FME Professional edition and above
Search FME Knowledge Center
Search for samples and information about this transformer on the FME Knowledge Center.