PointCloudCombiner
Combines features into a single point cloud. Point cloud and non-point cloud geometries are supported.
Typical Uses
- Combining multiple point clouds into a single feature
- Converting non-point cloud features to a point cloud in order to process them against point cloud features
- Converting non-point cloud geometry to a point cloud to take advantage of processing efficiency gains
How does it work?
The PointCloudCombiner receives one or more features and combines them into a single point cloud output feature, converting geometry to point clouds if necessary.
When combining multiple input features, all features must be in the same coordinate system, regardless of geometry type.
Attributes and measures may optionally be preserved as point cloud components.
The various input geometry types are each handled differently.
Point Clouds
Input point cloud features are simply combined with no further modifications. They may be combined with additional point clouds and/or any other input geometry type.
Vectors
Vectors are converted as follows:
- Point and curve features are converted vertex for vertex - that is, each vertex in the vector geometry will produce a point in the point cloud.
- Polygonal, donut, surface and solid features are converted into a grid of points lying inside the area on the 3D plane represented by the area’s calculated normal. The density of the grid may be adjusted with the Point Interval parameter.
Rasters
Rasters are converted as follows:
- The x and y components are created from the cell ground coordinates, or columns and rows if the raster has no coordinate system.
- The first selected numeric band will become the z component.
- The first selected bands with red/green/blue/gray interpretations will become the color_red/color_green/color_blue components.
- Additional selected bands will also be preserved. If the band has a name, the component name will be the band name. If the band has no name, the component name will be bandN, where N is the band index.
- Nodata may optionally be extracted.
Examples
Usage Notes
- When combining multiple input features (regardless of format), they must be in the same coordinate system. The CoordinateSystemSetter and Reprojector transformers may be useful.
Choosing a Point Cloud Transformer
FME has a selection of transformers for working specifically with point cloud data.
For information on point cloud geometry and properties, see Point Clouds (IFMEPointCloud).
Configuration
Input Ports
Output Ports
Parameters
Editing Transformer Parameters
Transformer parameters can be set by directly entering values, using expressions, or referencing other elements in the workspace such as attribute values or user parameters. Various editors and context menus are available to assist. To see what is available, click beside the applicable parameter.
For more information, see Transformer Parameter Menu Options.
Reference
Processing Behavior |
|
Feature Holding |
Yes |
Dependencies | None |
Aliases | |
History |
FME Community
The FME Community has a wealth of FME knowledge with over 20,000 active members worldwide. Get help with FME, share knowledge, and connect with users globally.
Search for all results about the PointCloudCombiner on the FME Community.
Examples may contain information licensed under the Open Government Licence – Vancouver, Open Government Licence - British Columbia, and/or Open Government Licence – Canada.