FME Transformers: 2024.2

Categories
Coordinates
Geometries
Related Transformers
AttributeRounder
GeometryValidator
RasterCellValueRounder

CoordinateRounder

Rounds off the coordinates of the feature to the specified number of decimal places.

Jump to Configuration

Typical Uses

  • Generalizing features

  • Altering coordinates to match a schema or dataset

  • Rounding coordinates where precision exceeds accuracy

How does it work?

The CoordinateRounder receives features and rounds their x, y, and/or z coordinates to a specified precision.

X, Y, and Z Precision parameters are specified as integers, and may be entered directly or set to an expression, user parameter, attribute, or conditional value. Positive numbers represent the number of decimal places to round to, and negative numbers produce rounding to multiples of ten (10). A precision of zero (0) produces integers - coordinates with no decimal places.

If any of the Precision parameters are left blank, those coordinates will pass through unaltered.

For arcs, only the start and end points are rounded, as these are the only coordinates which lie on the path of the arc. The center point is not rounded, nor are any other of the arc's parameters.

Rasters are passed through unaltered.

Rounding Errors and Floating-Point Processing

The CoordinateRounder may not always behave as expected, due to known limitations in floating-point computing.

Representing decimal (base 10) numbers in binary (base 2) can result in infinitely repeating values - much like 1 divided by 3 (that is, ⅓) results in 0.3333 (repeating to infinity) in the decimal number system.

For example, 1 divided by 5 (that is, ⅕), which produces 0.2 in the decimal system, recurs infinitely when represented as a binary value:

0.0111 1111 1001 0011 0011 0011 0011 0011... (0011 repeating)

When this value is converted back to a decimal, it produces 0.200000000000000011102230246252.

As a result, rounding can sometimes be unpredictable, rounding in an unexpected direction.

Some numbers like 1.1 cannot be stored precisely in binary and so end up as 1.1000000000000001, regardless of rounding. Rounding to 3 decimal places also results in 1.1000000000000001. Similarly, a value of 3.3333 is stored as 3.3332999999999999, and when rounded to 2 decimal places ends up as 3.3300000000000002.

Note that the same behavior may not be seen when values are handled as strings, as in the AttributeRounder, but they will be affected whenever the value is used as floating point.

Coordinates in FME are typically logged with full floating-point precision, including any floating-point processing precision error. Note that many formats have a way of controlling decimal precision based on data types or precision as set on the writer.

Examples

Usage Notes

Configuration

Input Ports

Output Ports

Parameters

Editing Transformer Parameters

Transformer parameters can be set by directly entering values, using expressions, or referencing other elements in the workspace such as attribute values or user parameters. Various editors and context menus are available to assist. To see what is available, click beside the applicable parameter.

For more information, see Transformer Parameter Menu Options.

Reference

Processing Behavior

Feature-Based

Feature Holding

No

Dependencies None
Aliases  
History  

FME Community

The FME Community has a wealth of FME knowledge with over 20,000 active members worldwide. Get help with FME, share knowledge, and connect with users globally.

Search for all results about the CoordinateRounder on the FME Community.

 

Examples may contain information licensed under the Open Government Licence – Vancouver, Open Government Licence - British Columbia, and/or Open Government Licence – Canada.