RasterBandCombiner
Merges coincidental raster features into a single output raster feature, preserving and appending all bands.
Typical Uses
- Assembling multi-band rasters from individual band data, such as multi-sensor remote sensing sources
- Combining multiple data bands for convenient storage or processing
How does it work?
The RasterBandCombiner receives groups of raster features with one or more bands, and appends all bands to a single output raster feature.
The rasters to be merged must align exactly. They must have the same number of columns and rows, and georeferenced rasters must have the same coordinates. The rasters may have any number and type of bands, and palettes are preserved.
The order of the input features and the order of the bands of the input features both determine the order of the bands in the output feature. The first band of the first input raster feature becomes Band 0, the second band of the first input raster feature becomes Band 1, and so on. Subsequent raster features' bands are appended sequentially, as they are received.
A Sorter transformer may be used to set the order in which the features are processed, and the RasterBandOrderer may be used to change the band order on individual rasters either before or after the RasterBandCombiner.
Input feature attributes may be optionally merged or retained as a list attribute. A count of input features may be added to a Count Attribute.
This transformer is unaffected by raster band and palette selection.
In this example, we will merge two numeric rasters into one for convenient storage of two related types of data. The source rasters contain elevation data and aspect, both covering the same area, with the same number of columns and rows.
The elevation raster has one band, with the interpretation type INT32 (32-bit integer). The individual cell values in this raster represent elevation in meters.
The associated aspect raster also has one band, with values representing the direction, in degrees, that the land faces.
Both raster features are routed into a RasterBandCombiner.
In the parameters dialog, the default settings will produce the desired results.
One raster feature is output, with two bands containing the original values from both input features. Note that the raster feature (as viewed in the Data Inspector) appears the same as the elevation input raster feature, as it arrived first in the transformer.
Each cell has two values - elevation integers, and floating point aspect.
Choosing a Raster Transformer
FME has an extensive selection of transformers for working with raster data. They can be generally categorized as working with whole rasters, bands, cells or palettes, and those designed for workflow control or combing raster with vector data.
For information on raster geometry and properties, see Rasters (IFMERaster).
Working with Rasters
RasterCellOriginSetter | Sets the raster's cell origin. |
RasterConvolver |
Applies a convolution filter (sometimes called a kernel or lens) to raster features and outputs the results. |
RasterExpressionEvaluator | Evaluates expressions on each cell in a raster or pair of rasters, including algebraic operations and conditional statements. |
RasterExtentsCoercer | Replaces the geometry of input raster features with a polygon covering the extents of the raster. |
RasterGCPExtractor | Extracts the coordinate system and the Ground Control Points (GCP) from the raster feature and exposes them as attributes. |
RasterGCPSetter | Sets the Ground Control Points (GCP) on a raster with the specified Column (pixel), Row (line), X Coordinate, Y Coordinate and Z Coordinate. |
RasterGeoreferencer | Georeferences a raster using the specified parameters. |
RasterHillshader | Generates a shaded relief effect, useful for visualizing terrain. |
RasterInterpretationCoercer |
Alters the underlying interpretation of the bands of the raster geometry on the input features, using the specified conversion options. For example, an input raster feature with three bands of interpretation (UInt16, Gray8, and Real64) could be converted to a raster feature with three bands of interpretation (Red8, Green8, and Blue8) or four bands of interpretation (Red16, Green16, Blue16, and Alpha16) in a single operation. |
RasterMosaicker | Merges multiple raster features into a single raster feature. |
RasterPropertyExtractor | Extracts the geometry properties of a raster feature and exposes them as attributes. |
RasterPyramider | Resamples rasters to multiple resolutions, based on either number of levels or dimensions of the smallest output raster. |
RasterResampler | Resamples rasters, based on specified output dimensions, cell size in ground units, or percentage of original, and interpolates new cell values. |
RasterRotationApplier |
Applies the raster rotation angle on the input raster properties to the rest of the raster properties and data values. The expected input is a raster with a non-zero rotation angle and the expected output is a rotated raster with a rotation angle of 0.0. It is expected that the input raster properties will be modified to conform the output raster properties for a raster rotated by the given angle. Applying a rotation angle is primarily done for compatibility with other processing and writers that cannot handle a rotation angle. |
RasterSubsetter | Clips raster features using pixel bounds instead of ground coordinates, and optionally adds cells around the perimeter. |
RasterTiler | Splits each input raster into a series of tiles by specifying either a tile size in cells/pixels or the number of tiles. |
RasterToPolygonCoercer | Creates polygons from input raster features. One polygon is output for each contiguous area of pixels with the same value in the input raster. |
WebMapTiler | Creates a series of image tiles that can be utilized by web mapping applications such as Bing™ Maps, Google Maps™, or Web Map Tile Service. This is done by resampling rasters to various different resolutions and then splitting them into tiles. |
Working with Bands
RasterBandAdder | Adds a new band to a raster feature. |
RasterBandCombiner | Merges coincidental raster features into a single output raster feature, preserving and appending all bands. |
RasterBandInterpretationCoercer |
Alters the interpretation type of individual raster bands, converting cell values if necessary. |
RasterBandKeeper |
Removes all unselected bands from a raster feature. |
RasterBandMinMaxExtractor | Extracts the minimum and maximum band values, palette keys, and palette values from a raster feature, and adds them to a list attribute. |
RasterBandNameSetter | Sets the band name of selected bands on a raster, making raster contents simpler to understand compared to band numbers. |
RasterBandNodataRemover | Removes the existing nodata identifier from selected bands of a raster feature. Any values previously equal to the nodata value are considered valid data. |
RasterBandNodataSetter | Sets a new nodata value on selected bands of a raster feature. |
RasterBandOrderer | Specifies the required order of bands in a raster. Bands are reordered according to the input band indices. |
RasterBandPropertyExtractor | Extracts the band and palette properties of a raster feature and exposes them as attributes. |
RasterBandRemover | Removes any selected bands from a raster feature. |
RasterBandSeparator | Separates bands or unique band and palette combinations, and outputs either individual raster features or a single new raster feature containing all combinations. |
RasterStatisticsCalculator | Calculates statistics on raster bands and adds the results as attributes. |
Working with Cells
RasterAspectCalculator |
Calculates the aspect (direction of slope) for each cell of a raster. Aspect is measured in degrees from 0 to 360, clockwise from north. |
RasterCellCoercer | Creates individual points or polygons for each cell in a raster, optionally extracting band values as z coordinates or attributes. |
RasterCellValueCalculator | Evaluates basic arithmetic , minimum, maximum or average operations on the cell values of a pair of rasters. |
RasterCellValueReplacer | Replaces a range of band values in a raster with a new single value. |
RasterCellValueRounder | Rounds off raster cell values. |
RasterSingularCellValueCalculator | Performs basic arithmetic operations on the cell values of a raster against a numeric value. |
RasterSlopeCalculator | Calculates the slope (maximum rate of change in z) for each cell of a raster. |
Working with Palettes
RasterPaletteAdder |
Creates a palette from an attribute, and adds this palette to all selected bands on a raster. |
RasterPaletteExtractor | Creates a string representation of an existing palette on a raster and saves it to an attribute. |
RasterPaletteGenerator | Generates a palette out of the selected band(s) of a raster. The output raster will have the selected band(s) replaced by a new band with a palette. |
RasterPaletteInterpretationCoercer |
Alters the interpretation type of raster palettes. |
RasterPaletteNodataSetter |
Identifies the palette key that matches a raster band’s nodata value, and sets a value on it. |
RasterPaletteRemover | Removes selected palette(s) from raster features. |
RasterPaletteResolver | Resolves the palette(s) on a raster by replacing cell values with their corresponding palette values. Palette values with multiple components, such as RGB, are broken down and the individual values assigned to multiple, newly-added bands. |
Workflow Control
RasterCheckpointer | Sets a checkpoint in the raster processing which forces previous processing to occur immediately. Once complete, it saves the current state to disk. |
RasterConsumer | Requests the tile(s) from the raster geometry but no actual operations are performed on the tile(s). |
RasterExtractor | Serializes the geometry of the feature into the Blob Attribute based on the selected writer format. |
RasterNumericCreator | Creates a feature with a raster of the specified size with a numeric value and sends it into the workspace for processing. It is useful for creating a very large image with a user-specified width and height. |
RasterReplacer | Replaces the geometry of the feature with the geometry held in the Blob Attribute. The blob is decoded according to the selected raster format. |
RasterRGBCreator | Creates a feature with a raster of the specified size with an RGB value and sends it into the workspace for processing. |
RasterSelector |
Selects specific bands and palettes of a raster for subsequent transformer operations. |
Vectors and Rasters
ImageRasterizer | Creates a raster representation of vector or point cloud input features, using the fme_color attribute over a solid background fill for vector features. Point clouds may be rendered using their color or intensity components. |
NumericRasterizer | Draws input point, line and polygon features onto a numeric raster filled with the background value. The Z coordinates of the input vector features are used to generate pixel values. Features without Z coordinates will be discarded. |
MapnikRasterizer | Generates a raster from input vector and raster features, with fine control over symbolization and labeling, using the Mapnik toolkit. |
PointOnRasterValueExtractor | Extracts the band and palette values from a raster at the location of one or more input points and sets them as attributes on the feature. |
VectorOnRasterOverlayer | Rasterizes vector or point cloud features onto an existing raster. For vector features the fme_color attribute sets pixel color, and point clouds may be rendered using their color or intensity components. |
Configuration
Input Ports
This transformer accepts only raster features.
Output Ports
One raster feature per group, with bands appended in the order received, and attributes retained as specified.
Non-raster features will be routed to the <Rejected> port, as well as invalid rasters.
Rejected features will have an fme_rejection_code attribute with one of the following values:
INVALID_GEOMETRY_TYPE
INVALID_FEATURE_MISMATCHED_PROPERTIES
Rejected Feature Handling: can be set to either terminate the translation or continue running when it encounters a rejected feature. This setting is available both as a default FME option and as a workspace parameter.
Parameters
Group By |
The rasters may be organized into groups, with each group of rasters having its own output raster. The properties of each raster within a group, such as the number of rows and columns, must match for the processing to proceed successfully. If georeferenced, the geographic extents of each raster in the group must also be identical. |
Parallel Processing |
Select a level of parallel processing to apply. Default is No Parallelism. Parallel Processing
Note: How parallel processing works with FME: see About Parallel Processing for detailed information. This parameter determines whether or not the transformer should perform the work across parallel processes. If it is enabled, a process will be launched for each group specified by the Group By parameter. Parallel Processing LevelsFor example, on a quad-core machine, minimal parallelism will result in two simultaneous FME processes. Extreme parallelism on an 8-core machine would result in 16 simultaneous processes. You can experiment with this feature and view the information in the Windows Task Manager and the Workbench Log window. |
Input Ordered |
No: This is the default behavior. Processing will only occur in this transformer once all input is present. By Group: This transformer will process input groups in order. Changes of the value of the Group By parameter on the input stream will trigger batch processing on the currently accumulating group. This will improve overall speed if groups are large/complex, but could cause undesired behavior if input groups are not truly ordered. Specifically, on a two input-port transformer, "in order" means that an entire group must reach both ports before the next group reaches either port, for the transformer to work as expected. This may take careful consideration in a workspace, and should not be confused with both port's input streams being ordered individually, but not synchronously. Considerations for Using Input is Ordered By
Using Ordered input can provide performance gains in some scenarios, however, it is not always preferable, or even possible. Consider the following when using it, with both one- and two-input transformers. Single Datasets/Feature Types: Are generally the optimal candidates for Ordered processing. If you know that the dataset is correctly ordered by the Group By attribute, using Input is Ordered By can improve performance, depending on the size and complexity of the data. If the input is coming from a database, using ORDER BY in a SQL statement to have the database pre-order the data can be an extremely effective way to improve performance. Consider using a Database Readers with a SQL statement, or the SQLCreator transformer. Multiple Datasets/Feature Types: Since all features matching a Group By value need to arrive before any features (of any feature type or dataset) belonging to the next group, using Ordering with multiple feature types is more complicated than processing a single feature type. Multiple feature types and features from multiple datasets will not generally naturally occur in the correct order. One approach is to send all features through a Sorter, sorting on the expected Group By attribute. The Sorter is a feature-holding transformer, collecting all input features, performing the sort, and then releasing them all. They can then be sent through an appropriate filter (TestFilter, AttributeFilter, GeometryFilter, or others), which are not feature-holding, and will release the features one at a time to the transformer using Input is Ordered By, now in the expected order. The processing overhead of sorting and filtering may negate the performance gains you will get from using Input is Ordered By. In this case, using Group By without using Input is Ordered By may be the equivalent and simpler approach. In all cases when using Input is Ordered By, if you are not sure that the incoming features are properly ordered, they should be sorted (if a single feature type), or sorted and then filtered (for more than one feature or geometry type). As with many scenarios, testing different approaches in your workspace with your data is the only definitive way to identify performance gains. |
Accumulation Mode |
Drop Incoming Attributes: Attributes from all incoming features are removed, including the first feature. Merge Incoming Attributes: Attributes from incoming features are merged onto the output raster feature. Use Attributes from One Feature: Attributes from the first input raster feature are retained. |
Count Attribute | If a Count Attribute is given, then an attribute with this name will be added to each output feature, containing the number of features that were combined to create the raster feature. |
Generate List
When enabled, adds a list attribute to the output raster feature, retaining attribute values for each input feature.
List Name |
Enter a name for the list attribute. Note: List attributes are not accessible from the output schema in Workbench unless they are first processed using a transformer that operates on them, such as ListExploder or ListConcatenator. Alternatively, AttributeExposer can be used. |
Add To List |
All Attributes: All attributes will be added to the output raster feature. Selected Attributes: Enables the Selected Attributes parameter, where specific attributes may be chosen to be added. |
Selected Attributes | Enabled when Add To List is set to Selected Attributes. Specify the attributes you wish to be added. |
Editing Transformer Parameters
Using a set of menu options, transformer parameters can be assigned by referencing other elements in the workspace. More advanced functions, such as an advanced editor and an arithmetic editor, are also available in some transformers. To access a menu of these options, click beside the applicable parameter. For more information, see Transformer Parameter Menu Options.
Defining Values
There are several ways to define a value for use in a Transformer. The simplest is to simply type in a value or string, which can include functions of various types such as attribute references, math and string functions, and workspace parameters. There are a number of tools and shortcuts that can assist in constructing values, generally available from the drop-down context menu adjacent to the value field.
Using the Text Editor
The Text Editor provides a convenient way to construct text strings (including regular expressions) from various data sources, such as attributes, parameters, and constants, where the result is used directly inside a parameter.
Using the Arithmetic Editor
The Arithmetic Editor provides a convenient way to construct math expressions from various data sources, such as attributes, parameters, and feature functions, where the result is used directly inside a parameter.
Conditional Values
Set values depending on one or more test conditions that either pass or fail.
Parameter Condition Definition Dialog
Content
Expressions and strings can include a number of functions, characters, parameters, and more - whether entered directly in a parameter or constructed using one of the editors.
These functions manipulate and format strings. | |
A set of control characters is available in the Text Editor. | |
Math functions are available in both editors. | |
These operators are available in the Arithmetic Editor. | |
These return primarily feature-specific values. | |
FME and workspace-specific parameters may be used. | |
Working with User Parameters | Create your own editable parameters. |
Reference
Processing Behavior |
|
Feature Holding |
Yes |
Dependencies | None |
FME Licensing Level | FME Professional Edition and above |
Aliases | RasterBandMerger RasterMerger |
History | |
Categories |
FME Community
The FME Community is the place for demos, how-tos, articles, FAQs, and more. Get answers to your questions, learn from other users, and suggest, vote, and comment on new features.
Search for all results about the RasterBandCombiner on the FME Community.
Examples may contain information licensed under the Open Government Licence – Vancouver