Allowed Projection Types

Each coordinate system definition must specify a projection type and provide values for all of the parameters associated with the projection.

The table below lists the projection types allowed in coordinate system definitions.

Notes

  • All latitudes and longitudes provided as projection parameters must be given in degrees. Negative values are used to indicate southern latitude and western longitude.
  • All longitude values must be given relative to the Greenwich Prime Meridian.
  • False origins are always given in the units of the coordinate system.
Projection Type Description
AE Albers Equal Area
AZMEA Lambert Azimuthal Equal Area
AZMED Lambert Azimuth Equidistant
AZMED-ELEV Lambert Azimuthal Equidistant, Elevated Ellipsoid
BIPOLAR Bipolar Oblique Conformal Conic
BONNE Bonne
CASSINI Cassini
ECKERT4 Eckert 4
ECKERT6 Eckert 6
EDCNC Equidistant Conic
EDCYL Equidistant Cylindrical
EDCYL-E Equidistant Cylindrical Projection (Ellipsoidal or Spherical)
GAUSSK Gauss Kruger Projection, aka Gauss
GEOCENTRIC_FME Geocentric
GNOMONIC Gnomonic
GOODE Good Homolosine
HOM1UV Hotine Oblique Mercator – one point, unrectified
HOM1XY Hotine Oblique Mercator, Alaska Variation
HOM2UV Hotine Oblique Mercator – two points, unrectified
HOM2XY Hotine Oblique Mercator –  two points, rectified
KROVAK Krovak Oblique Conformal Conic, Czechoslovkia
KROVAK95 Krovak Oblique Conformal Conic, Czechoslovkia, 1995 Adjustment
LL Latitude/Longitude
LM Lambert Conformal Conic
LM1SP Lambert Conformal Conic Projection, One Standard Parallel
LMAF Lambert Conformal Conic (2SP) with Affine Post Process
LMBLGN Lambert Conformal Conic Projection, Belgian Variation
LM-MNDOT Lambert Conformal Conic, Minnesota DOT Variation
LMTAN Lambert Tangential
LM-WCCS Lambert Conformal Conic, Wisconsin County Variation
MILLER Miller Cylindrical
MODPC Modified Polyconic
MOLLWEID Mollweide Projection
MRCAT Mercator Cylindrical Projection with Standard Parallel (Tradi­tional)
MRCAT-PV Popular Visualisation Pseudo Mercator
MRCATK Mercator Cylindrical Projection with Scale Reduction
MSTERO Modified Stereographic
NEACYL Normal Aspect Equal Area Cylindrical
NERTH NonEarth
NERTH-SRT NERTH-SRT
NZEALAND New Zealand National Grid
OBQCYL Oblique Cylindrical
ORTHO Orthographic
OSTERO Oblique Stereographic (International)
OSTEROUS Oblique Stereographic (per Snyder USA)
OSTN02 ETRF89 Referenced OSGB
OSTN97 ETRF89 Referenced OSGB (ETRF89<-->OSGB via OSTN97)
PCARREE Plate Carree / Simple Cylindrical
PLYCN American Polyconic
PSTERO Polar Stereographic Projection
PSTEROSL Polar Sterographic with Standard Latitude Projection
ROBINSON Robinson
RSKEW Rectified Skew Orthomorphic, Azimuth at Projection Center
RSKEWC Rectified Skew Orthomorphic, Origin and Azimuth at Center
RSKEWO Rectified Skew Orthomorphic, Skew Azimuth at Rectified Origin
SINUS Sinusoidal
SOTM South-Oriented Transverse Mercator
SWISS Swiss Oblique Cylindrical Projection
SYSTM34 Danish System 34, UTM + polynomials (pre-1999 vintage)
SYSTM34-01 Danish System 34, UTM + polynomials (2001 vintage)
SYSTM34-99 Danish System 34, UTM + polynomials (1999 vintage)
TEACYL Transverse Aspect Equal Area Cylindrical
TM Transverse Mercator
TMAF Transverse Mercator (Gauss/Kruger) with Affine Post Process
TM-MNDOT Transverse Mercator, Minnesota DOT Variation
TM-SNYDER Transverse Mercator per J. P. Snyder
TM-WCCS Transverse Mercator, Wisconsin County Variation
TRMRKRG Transverse Mercator using Kruger Formulation
UTM Universal Transverse Mercator System
VDGRNTN Van Der Grinten