FME Readers and Writers 2013 SP1

Microsoft Access Reader/Writer

Format Note: This format is not supported by FME Base Edition.

Overview

The Microsoft® Access reader and writer provide FME with access to attribute data held

in live MS Access database tables. This data may not necessarily have a spatial com-

ponent to it. FME provides read and write access to live MS Access databases via Micro-

soft’s ActiveX Data Objects (ADO).

Note: Only the standard SQL wildcard characters (% and _) are supported for SQL
LIKE queries. Microsoft Access wildcard characters (*, ?, and #) are not supported.

Note: See the @SQL function in the FME Functions and Factories manual. This func-
tion allows arbitrary Structured Query Language (SQL) statements to be executed

against any database.

MS Access Database Quick Facts
About Quick Facts Tables

Format Type Identifier

MDB_ADO

Reader/Writer

Both

Licensing Level

Professional

Dependencies

= File versions prior to 2007: None, but
the format is available only on Win-
dows.

= File versions 2007 or newer: install a
corresponding or newer version of
Microsoft Office, or the free download
of Microsoft Access Database Engine
2010 Redistributable.

Dataset Type

Database

Feature Type

Table name

Typical File Extensions

Not applicable

Automated Translation Support Yes
User-Defined Attributes Yes
Coordinate System Support No
Generic Color Support No
Spatial Index Never
Schema Required Yes

- 2318 -

Overview

Transaction Support Yes
Encoding Support Yes
Geometry Type db_none

Geometry Support
Geometry Supported? Geometry Supported?
aggregate no point no
circles no polygon no
circular arc no raster no
donut polygon no solid no
elliptical arc no surface no
ellipses no text no
line no z values n/a
none yes

Reader Overview

FME considers a database data set to be a collection of relational tables. The tables
must be defined in the mapping file before they can be read. Arbitrary where clauses
and joins are fully supported.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By
default, the <ReaderKeyword> for the MS Access reader is MDB_ADO.

DATASET
Required/Optional: Required
This is the file name of the Microsoft Access Database.
Example:
MDB_ADO_DATASET c:/data/citySource.mdb
Workbench Parameter: Source Microsoft Access Database File(s)
PROVIDER TYPE
Required/Optional: Optional

The type of database provider being used. This directive is internal to FME and should
always be set to MDB_ADO. For example,

MDB_ADO_PROVIDER_TYPE MDB_ADO

- 2319 -

FME Readers and Writers 2013 SP1

PASSWORD
Required/Optional: Optional

The password used to access the database. It can be omitted for Access databases
without password protection.

Please note that databases associated with a Microsoft Access workgroup are not sup-
ported.

Example:

MDB_ADO_PASSWORD moneypenny

Workbench Parameter: Password
DEF

Required/Optional: Required

The syntax of the definition is:

MDB_ADO_DEF <tableName> \
[mdb_where_cTlause<whereClause>] \
[<fieldName><fieldType>] +

or

MDB_ADO_DEF <queryName> \
[mdb_sql_statement <sqlQuery>] \

The <tabTeName> must match the name of an existing MS Access table in the data-
base. This will be used as the feature type of all the features read from the table. The
exception to this rule is when using the mdb_sql_statement directive. In this case, the
DEF name may be any valid alphabetic identifier; it does not have to be an existing
table name - rather, it is an identifier for the custom SQL query. The feature type of all
the features returned from the SQL query are given the query name.

The <fieldType> of each field must be given, but it is not verified against the data-
base definition for the field. In effect, it is ignored.

The definition allows specification of separate search parameters for each table. If any
of the per table configuration parameters are given, they will override, for that table,
whatever global values have been specified by the reader directives such as the
WHERE_CLAUSE. If any of these parameters is not specified, the global values will be
used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

mdb_where_clause This specifies the SQL WHERE clause applied to the
attributes of the layer’s features to limit the set of
features returned. If this is not specified, then all the
rows are returned. This directive will be ignored if

- 2320 -

Overview

Parameter Contents

the mdb_sql_statement is present.

mdb_sql_statement This specifies an SQL SELECT query to be used as the
source for the results. If this is specified, the MS
Access reader will execute the query, and use the
resulting rows as the features instead of reading
from the table <queryName>. All returned features
will have a feature type of <queryName>, and attrib-
utes for all columns selected by the query. The mdb_
where_clause is ignored if mdb_sql_statement is sup-
plied. This form allows the results of complex joins to
be returned to FME.

If no <whereClause> is specified, all rows in the table will be read and returned as
individual features. If a <whereClause> is specified, only those rows that are selected
by the clause will be read. Note that the <wherecClause> does not include the word
WHERE.

The MS Access reader allows one to use the mdb_sql_statement parameter to specify an
arbitrary SQL SELECT query on the DEF line. If this is specified, FME will execute the
query, and use each row of data returned from the query to define at least one feature.
Each of these features will be given the feature type named in the DEF line, and will
contain attributes for every column returned by the SELECT. In this case, all DEF line
parameters regarding a WHERE clause or spatial querying are ignored, as it is possible
to embed this information directly in the text of the <sglQuery>.

In the following example, the all records whose ID is less than 5 will be read from the
supplier table:

MDB_ADO_DEF supplier \
mdb_where_clause "id < 5" \
ID 1integer \
NAME char(100) \
CITY char(50)

In this example, the results of joining the employee and city tables are returned. All
attributes from the two tables will be present on each returned feature. The feature
type will be set to complex.

MDB_ADO_DEF complex \
mdb_sql_statement \
"SELECT * FROM EMPLOYEE, CITY WHERE EMPLOYEE.CITY = CITY.NAME"

WHERE_CLAUSE

Required/Optional
Optional

- 2321 -

FME Readers and Writers 2013 SP1

This optional specification is used to limit the rows read by the reader from each table.
If a given table has no mdb_where_clause or mdb_sql_statement specified in its DEF line,
the global <ReaderKeyword> WHERE_CLAUSE value, if present, will be applied as the
WHERE specifier of the query used to generate the results. If a table’s DEF line does con-
tain its own mdb_where_clause or mdb_sql_statement, it will override the global WHERE
clause.

The syntax for this clause is:

MDB_ADO_WHERE_CLAUSE <whereClause>

Note: The <wherecClause> does not include the word "WHERE.”

The example below selects only the features whose lengths are more than 2000:

MDB_ADO_WHERE_CLAUSE LENGTH > 2000

%X Workbench Parameter
Where Clause

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables
that will be read. If no IDs are specified, then all tables are read. The syntax of the IDs
directive is:

MDB_ADO_IDs <featureTypel> \
<featureType2> .. \
<featureTypeN>

The feature types must match those used in DEF lines.
The example below selects only the HISTORY table for input during a translation:

MDB_ADO_IDs HISTORY

Workbench Parameter: Feature Types to Read
READ_CACHE_SIZE
Required/Optional: Optional

This directive controls how the reader retrieves rows from the database. This must be
a numeric value which must be greater than 0.

The READ_CACHE_SIZE is used to determine the number of rows that are retrieved at
one time into local memory from the data source. For example, if the READ_CACHE_
SIZE is set to 10, after the reader is opened, the reader will read 10 rows into local
memory. As features are processed by the FME, the reader returns the data from the
local memory buffer. As soon as you move past the last row available in local mem-
ory, the reader will retrieve the next 10 rows from the data source.

- 2322 -

Overview

This directive affects the performance of the reader, and will result in significantly
degraded performance if incorrectly set. The optimum value of this directive depends
primarily on the characteristics of individual records and the transport between the
database and the client machine. It is less affected by the quantity of rows that are to
be retrieved.

By default, the READ_CACHE_SIZE is set to 10. This value has been determined to be
the optimal value for average datasets.

Workbench Parameter: Number of Records to Fetch At A Time
RETRIEVE_ALL SCHEMAS
Required/Optional: Optional

This directive is only applicable when generating a mapping file, generating a work-
space or when retrieving schemas in a FME Objects application.

When set to “Yes”, indicates to the reader to return all the schemas of the tables in the
database.

If this directive is missing, it is assumed to be “No".
Range: YES | NO

Default: NO

RETRIEVE_ALL TABLE NAMES
Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a work-
space or when retrieving schemas in a FME Objects application.

Similar to RETRIEVE_ALL_SCHEMAS; this optional directive is used to tell the reader to
only retrieve the table names of all the tables in the source database. If RETRIEVE
ALL_SCHEMAS is also set to “Yes”, then RETRIEVE_ALL_SCHEMAS will take prec-
edence. If this directive is not specified, it is assumed to be “No”.

Range: YES | NO
Default: NO

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the
reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been
generated; however, it is even more powerful because it enables schema-driven appli-
cations other than Workbench to access and leverage these attributes as if they were
explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names
and types that will be added to the schema features. Currently all reader feature types

- 2323 -

FME Readers and Writers 2013 SP1

will receive the same set of additional schema attributes for a given instance of the
reader.

Required/Optional
Optional

Mapping File Syntax

Not applicable. While it is possible for FME Objects applications to invoke this direc-
tive, the required format is not documented. This directive is intended for use in our
GUI applications (for example, Workbench) only.

R Workbench Parameter

Additional Attributes to Expose

Writer Overview

The MS Access writer module stores attribute records into a live relational database.
The MS Access writer provides the following capabilities:

« Transaction Support: The MS Access writer provides transaction support that

eases the data loading process. Occasionally, a data load operation terminates pre-

maturely due to data difficulties. The transaction support provides a mechanism
for reloading corrected data without data loss or duplication.

« Table Creation: The MS Access writer uses the information within the FME map-
ping file to automatically create database tables as needed.

« Writer Mode Specification: The MS Access writer allows the user to specify
what database command should be issued for each feature received. Valid writer
modes are INSERT, UPDATE and DELETE. The writer mode can be specified at
three unique levels: at the writer level, on the feature type, or on individual fea-
tures.

Writer Directives

The directives processed by the MS Access Writer are listed below. The suffixes shown
are prefixed by the current <writerkeyword> in a mapping file. By default, the <writ-
erkeyword> for the MS Access writer is MDB_ADO.

DATASET, PROVIDER_TYPE

The DATASET and PROVIDER_TYPE directives operate in the same manner as they do
for the MS Access reader. The remaining writer-specific directives are discussed in the
following sections.

Workbench Parameter: Destination Microsoft Access Database File
PASSWORD
Required/Optional: Optional

- 2324 -

Overview

The password used to access the database. For existing databases, it may be omitted
for Access databases without password protection. If the database does not exist, then
the newly created Microsoft Access database will be protected by this password.

Please note that databases associated with a Microsoft Access workgroup are not sup-
ported.

MDB_ADO_PASSWORD moneypenny

Workbench Parameter: Password
DEF
Required/Optional: Required

Each MS Access table must be defined before it can be written. The general form of a
MS Access definition statement is:

MDB_ADO_DEF <tableName> \
[mdb_update_key_columns <keyColumns>]\
[mdb_drop_table (yes|no)]\
[mdb_truncate_table (yes|no)] \
[mdb_tabTle_writer_mode (inherit_from_writer|insert|

update|delete)] \
[<fieldName><fieldType>[,<indexType>]]+

The table definition allows control of the table that will be created. If the fields and
types are listed, the types must match those in the database. Fields which can contain
NULL values do not need to be listed - these fields will be filled with NULL values.

If the table does not exist, then the field names and types are used to first create the
table. In any case, if a <fieldType> is given, it may be any field type supported by the
target database.

The configuration parameters present on the definition line are described in the fol-
lowing table:

Parameter Contents

tableName The name of the table to be written. If a table with the
specified name exists, it will be overwritten if the mdb_
drop_table DEF line parameter is set to YES, or it will be
truncated if the mdb_truncate_table DEF line parameter is
set to YES. Otherwise the table will be appended. Valid
values for table names include any character string
devoid of SQL-offensive characters and less than 128
characters in length.

mdb_table_writer_mode | The the default operation mode of the feature type in
terms of the types of SQL statements sent to the data-
base.Valid values are INSERT, UPDATE, DELETE and
INHERIT_FROM_WRITER. Note that INSERT mode allows

- 2325 -

FME Readers and Writers 2013 SP1

Parameter

Contents

for only INSERT operations where as UPDATE and DELETE
can be overwritten at the feature levels. INHERIT_FROM_
WRITER simply indicates to take this value from the
writer level and not to override it at the feature type
level.

Default: INHERIT_FROM_WRITER

mdb_update_key_
columns

This is a comma-separated list of the columns which are
matched against the corresponding FME attributes’
values to specify which rows are to be updated or
deleted when the writer mode is either UPDATE or
INSERT.

For example:
mdb_update_key_columns 1ID

would instruct the writer to ensure that the FME attrib-
ute is always matched against the column with the same
name. Also, the target table is always the feature type
specified in the DEF line.

Each column listed with the mdb_update_key_columns
directive must be defined with a type on the DEF line, in
addition to the columns whose values will be updated by
the operation.

mdb_drop_table

This specifies that if the table exists by this name, it
should be dropped and replaced with a table specified by
this definition.

Default: NO

mdb_truncate_table

This specifies that if the table exists by this name, it
should be cleared prior to writing.

Default: NO
fieldName The name of the field to be written. Valid values for field
name include any character string devoid of SQL-offen-
sive characters and less than 128 characters in length.
fieldType The type of a column in a table. The valid values for the

field type are listed below:

yesno
memo
hyperlink
replicationid
oleobject
integer

- 2326 -

Overview

Parameter Contents

byte

long

autonumber

datetime
decimal(width,decimal)
single

double

currency

text(width)

indexType The type of index to create for the column.

If the table does not previously exist, then upon table
creation, a database index of the specified type is
created. The database index contains only the one col-
umn.

The valid values for the column type are listed below:

indexed: An index without constraints.
unique: An index with a unique constraint.

VERSION
Required/Optional: Required

This statement tells the MS Access writer what version of database should be created.
If the database file already exists, the writer will automatically detect and use the cor-
rect version.

Parameter Contents

<version> The version of Microsoft Access database
file to create. The valid values are listed
below:

2000/2002/2003

95/97

2.0

Default: 2000/2002/2003

Example:

MDB_ADO_VERSION 2000/2002/2003
Workbench Parameter: Version
START_TRANSACTION
Required/Optional: Optional

- 2327 -

FME Readers and Writers 2013 SP1

This statement tells the MS Access writer module when to start actually writing fea-
tures into the database. The MS Access writer does not write any features until the fea-
ture is reached that belongs to <last successful transaction> + 1. Specifying a value of zero
causes every feature to be output. Normally, the value specified is zero — a non-zero
value is only specified when a data load operation is being resumed after failing part-
way through.

Parameter Contents

<last successful transaction> The transaction number of the last suc-
cessful transaction. When loading data for
the first time, set this value to 0.

Default: 0

Example:

MDB_ADO_START_TRANSACTION O

Workbench Parameter: Start transaction at
TRANSACTION_INTERVAL
Required/Optional: Optional

This statement informs the FME about the number of features to be placed in each
transaction before a transaction is committed to the database.

If the MDB_ADO_TRANSACTION_INTERVAL statement is not specified, then a value of
500 is used as the transaction interval.

Parameter Contents
<transaction_interval> The number of features in a single trans-
action.

Default: 500

If the MDB_ADO TRANSACTION INTERVAL is set to zero, then feature based trans-
actions are used. As each feature is processed by the writer, they are checked for an
attribute called fme_db_transaction. The value of this attribute specifies whether the
writer should commit or rollback the current transaction. The value of the attribute can
be one of COMMIT_BEFORE, COMMIT_AFTER, ROLLBACK_AFTER or IGNORE. If the
fme_db_transaction attribute is not set in any features, then the entire write operation
occurs in a single transaction.

Example:

MDB_ADO_TRANSACTION_INTERVAL 5000

Workbench Parameter: Transaction interval
WRITER_MODE
Required/Optional: Optional

- 2328 -

Overview

Note: For more information, see the chapter Database Writer Mode on page 19.

This directive informs the MS Access writer which SQL operations will be performed by
default by this writer. This operation can be set to INSERT, UPDATE or DELETE. The
default writer level value for this operation can be overwritten at the feature type or
table level. The corresponding feature type DEF parameter name is called mdb_table_
writer_mode. It has the same valid options as the writer level mode and additionally the
value INHERIT_FROM_WRITER which causes the writer level mode to be inherited by the
feature type as the default for features contained in that table.

The operation can be set specifically for individual feature as well. Note that when the
writer mode is set to INSERT this prevents the mode from being interpreted from
individual features and all features are inserted unless otherwise marked as UPDATE
or DELETE features. These are skipped.

If the MDB_ADO_WRITER_MODE statement is not specified, then a value of INSERT is
given.

Parameter Contents

<writer_mode> The type of SQL operation that should be per-
formed by the writer. The valid list of values
are below:

INSERT
UPDATE
DELETE
Default: INSERT

Example:

MDB_ADO_WRITER_MODE INSERT

Workbench Parameter: Writer Mode

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For exam-
ple, it may be necessary to ensure that a view exists prior to attempting to read from
it.

Upon opening a connection to read from a database, the reader looks for the directive

<Readerkeyword>_BEGIN_SQL{n} (for n=0,1,2,...), and executes each such direc-
tive's value as an SQL statement on the database connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_
DELIMITER keyword, embedded at the beginning of the SQL block. The single character
following this keyword will be used to split the SQL, which will then be sent to the data-
base for execution. Note: Include a space before the character.

For example:

- 2329 -

FME Readers and Writers 2013 SP1

FME_SQL_DELIMITER ;

DELETE FROM instructors;

DELETE FROM people

WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before
being sent to the database.

Any errors occurring during the execution of these SQL statements will normally ter-
minate the reader with an error. If the specified statement is preceded by a hyphen
(*-"), such errors are ignored.

Required/Optional

Optional

3% Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For
example, it may be necessary to clean up a temporary view after writing to the data-
base.

Just before closing a connection on a database, the reader looks for the directive
<ReaderKeyword>_END_SQL{n} (for n=0,1,2,...), and executes each such directive’s
value as an SQL statement on the database connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL _
DELIMITER directive, embedded at the beginning of the SQL block. The single character
following this directive will be used to split the SQL, which will then be sent to the data-
base for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;

DELETE FROM people

WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before
being sent to the database.

Any errors occurring during the execution of these SQL statements will normally ter-
minate the reader with an error. If the specified statement is preceded by a hyphen
(“-"), such errors are ignored.

Required/Optional
Optional

*X Workbench Parameter

SQL Statement to Execute After Translation

- 2330 -

Overview

INIT_TABLES
Required/Optional: Optional

This directive informs the MS Access writer when each table should be initialized.
Initialization encompasses the actions of dropping or truncating existing tables, and
creating new tables as necessary.

When INIT_TABLES is set to IMMEDIATELY, the MS Access writer will initialize all tables
immediately after parsing the DEF lines and opening the database file. In this mode, all
tables will be initialized, even if the MS Access writer receives no features for a given
table.

When INIT_TABLES is set to FIRSTFEATURE, the MS Access writer will only initialize a
table once the first feature destined for that table is received. In this mode, if the MS
Access writer does not receive any features for a given table, the table will never be
initialized.

Workbench Parameter: Initialize Tables

COMPRESS_AT_END

When this directive is set to “YES”, the MS Access writer will compress the database
after all features have been written. This makes use of the existing MDB database
option to compact. If COMPRESS_AT_END is not present the database will not be com-
pressed.

Required/Optional
Optional

Values
Yes | No (default)
Mapping File Syntax
<WriterKeyword>_COMPRESS_AT_END YES
%X Workbench Parameter
Compress Database When Done
OVERWRITE_FILE
Required/Optional: Required
If set to YES, deletes the existing database before writing.
%X Workbench Parameter

Overwrite Existing Database

- 2331 -

FME Readers and Writers 2013 SP1

Writer Mode Specification

The MS Access writer allows the user to specify a writer mode, which determines what
database command should be issued for each feature received. Valid writer modes are
INSERT, UPDATE and DELETE.

Writer Modes

In INSERT mode, the attribute values of each received feature are written as a new
database record.

In UPDATE mode, the attribute values of each received feature are used to update exist-
ing records in the database. The records which are updated are determined via the
mdb_update_key_columns DEF line parameter, or via the fme_where attribute on the
feature.

In DELETE mode, existing database records are deleted according to the information
specified in the received feature. Records are selected for deletion using the same tech-
nique as records are selected for updating in UPDATE mode.

Writer Mode Constraints

In UPDATE and DELETE mode, the fme_where attribute always takes precedence over
the mdb_update_key_coTlumns DEF line parameter. If both the fme_where attribute and
the mdb_update_key_coTlumns DEF line parameter are not present, then UPDATE or
DELETE mode will generate an error.

When the fme_where attribute is present, it is used verbatim as the WHERE clause on
the generated UPDATE or DELETE command. For example, if fme_where were set to
‘1d<5’, then all database records with field ID less than 5 will be affected by the com-
mand.

When the fme_where attribute is not present, the writer looks for the mdb_update_
key_columns DEF line parameter and uses it to determine which records should be
affected by the command. Please refer to See "DEF" for more information about the
mdb_update_key_columns DEF line parameter.

Writer Mode Selection

The writer mode can be specified at three unique levels. It may be specified on the
writer level, on the feature type or on individual features.

At the writer level, the writer mode is specified by the WRITER_MODE directive. This
directive can be superseded by the feature type writer mode specification. For more
information on this directive, see the chapter Database Writer Mode.

At the feature type level, the writer mode is specified by the mdb_writer_mode DEF

line parameter. This parameters supersedes the WRITER_MODE directive. Unless this
parameter is set to INSERT, it may be superseded on individual features by the fme_
db_operation attribute. Please refer to the DEF line documentation for more infor-

mation about this parameter.

At the feature level, the writer mode is specified by the fme_db_operation attribute.
Unless the parameter at the feature type level is set to INSERT, the writer mode

- 2332 -

Overview

specified by this attribute always supersedes all other values. Accepted values for the
fme_db_operation attribute are INSERT, UPDATE or DELETE.

fme_db_transaction

As each feature is processed by the writer, it is checked for an attribute called fme_db_
transaction.

The value of this attribute specifies whether the writer should commit or rollback the
current transaction. The value of the attribute can be one of:

e COMMIT_BEFORE

e COMMIT_AFTER

e ROLLBACK_AFTER
e IGNORE

If the fme_db_transaction attribute is not set in any features, the entire write oper-
ation occurs in a single transaction.

Note: To use this capability, the Transaction Interval (for ArcSDE, this is called Fea-
tures to Write Per Transaction) must be set to VARIABLE.

Feature Representation

Features read from a database consist of a series of attribute values. They have no
geometry. The attribute names are as defined in the DEF line if the first form of the
DEF line was used. If the second form of the DEF line was used, then the attribute
names are as they are returned by the query, and as such may have their original
table names as qualifiers. The feature type of each MS Access feature is as defined on
its DEF line.

Features written to the database have the destination table as their feature type, and
attributes as defined on the DEF line.

- 2333 -

	Microsoft Access Reader/Writer
	Overview
	MS Access Database Quick Facts
	Reader Overview
	EXPOSED_ATTRS
	Writer Overview
	BEGIN_SQL{n}
	END_SQL{n}
	Feature Representation

